

Android ADK Toolkit: startup without headaches!

This toolkit is a collections of utilities that helps beginners to be up and running with ADK 2012
without difficulties. ADK toolkit exposes an AdkManager to manage UsbManager and
UsbAccessory. In this way you avoid any complex understanding of how Android ADK works. If
you want to create quickly your first accessory as fast as possible, this toolkit is a great getting
started.

ADK Toolkit

	Overview
	Compatible Android devices

	Compatible ADK devices

	Usage
	Installing the library

	Configuring the Android application

	Arduino communication
	Arduino and the Android Manifest

	Interacting with Android

	Simple echo sketch

Project Info

	Contributing

	Authors

	Changelog

	Migrate from previous versions

Overview

The Accessory Development Kit (ADK) [http://developer.android.com/tools/adk/adk2.html] allows you building USB or Bluetooth accessories that extend
the capabilities of your user’s Android-powered devices. Android defines the
Android Open Accessory Protocol (AOA) [http://source.android.com/accessories/protocol.html] used in accessories to create a communication channel
between your Android application and your ADK compatible device.

Compatible Android devices

Android Open Accessory support is included since Android 3.1 (API Level 12), but a porting through
an Add-On Library was available even in Android 2.3.4 (API Level 10).
Check the official documentation [http://source.android.com/accessories/index.html] for more information.

Warning

Even if your Android device uses an API level 12+, it doesn’t mean that it is ADK compatible.
The ADK support is related to some hardware specifications that your smartphone / board
manufacturer should comply. Before you proceed, check if your smartphone or board have a full
ADK support.

Compatible ADK devices

Your accessory should implement many features as described in building custom accessories [http://source.android.com/accessories/custom.html]
section. Many Arduino devices have a built-in support for ADK (and so AOA protocol) and the
following is a list of supported devices:

	Arduino ADK [http://arduino.cc/en/Main/ArduinoBoardADK]

	Arduino Due [http://arduino.cc/en/Main/ArduinoBoardDue]

	UDOO board [http://www.udoo.org/]

Note

This list is community driven. There I will list only devices that me or other
contributors have used. If you are pretty sure that other boards have this support, follow
the contribution guidelines.

Usage

ADK 2012 is the latest version that can be used during accessories development. This library works
as a wrapper of ADK capabilities so your application development will be smoothest. If you
want to see how ADK 2012 works, follow the official documentation [http://developer.android.com/tools/adk/adk2.html].

Note

Even if ADK is supported since Android API level 10, I will only target API level 12 in this
library as stated in cutting down backward support [https://github.com/palazzem/adk-toolkit/issues/2] issue.

Installing the library

This library is available in MavenCentral and JCenter repositories. Adding the library dependency
is pretty easy and you can configure your Gradle or Maven dependency file as follows:

Gradle

dependencies {
 compile 'me.palazzetti:adktoolkit:0.3.0'
}

Maven

<dependency>
 <groupId>me.palazzetti</groupId>
 <artifactId>adktoolkit</artifactId>
 <version>0.3.0</version>
 <type>aar</type>
</dependency>

Eclipse users

All published libraries in MavenCentral or JCenter are in AAR format. Unfortunately,
Eclipse seems to have a bug [https://code.google.com/p/android/issues/detail?id=59183] and AAR import will not work as expected. I’ve created an assemble
task in the gradle build script to produce a JAR library that you can easily import manually in
your project. The pre-assembled libraries are available in the repository release section [https://github.com/palazzem/adk-toolkit/releases].

Note

If you are using Eclipse with ADT, be aware that Android Studio is now the official IDE for
Android, so it’s a good idea to migrate your projects to Android Studio. For help moving
projects, see Migrating to Android Studio [http://developer.android.com/sdk/installing/migrate.html]. Despite that, ADKToolkit library will continue
to support JAR library releases.

Configuring the Android application

Android Manifest

Create res/xml/usb_accessory_filter.xml configuration file to identify your accessory:

<resources>
 <usb-accessory
 version="0.1.0"
 model="External-Droid"
 manufacturer="Example, Inc."/>
</resources>

Declare in your manifest that your application requires USB accessory support:

<manifest>
 <uses-feature android:name="android.hardware.usb.accessory" android:required="true"/>

 <!-- ... -->
</manifest>

Then add in your activity block this ADK intent filter:

<manifest ...>
 <application ...>
 <activity ...>

 <!-- ... -->

 <!-- Adk Intent Filter -->
 <intent-filter>
 <action android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED" />
 </intent-filter>

 <meta-data android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
 android:resource="@xml/usb_accessory_filter"/>
 </activity>
 </application>
</manifest>

Starting the ADK listener

To use this library, initialize the AdkManager in your Activity onCreate() callback
like you can see in the following snippet:

private AdkManager mAdkManager;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mAdkManager = new AdkManager(this);
}

If you need to register a BroadcastReceiver to catch UsbManager.ACTION_USB_ACCESSORY_DETACHED
action, you can use the library default implementations as follows:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mAdkManager = new AdkManager(this);
 registerReceiver(mAdkManager.getUsbReceiver(), mAdkManager.getDetachedFilter());
}

When you initialize an AdkManager, it just create a connection object between your device and
your accessory. You need to start/stop AOA communication when you open/close your activity. Add
the following calls in your onResume() and onPause() callbacks to open and close ADK
communication, when your Activity is resumed or paused:

@Override
protected void onResume() {
 super.onResume();
 mAdkManager.open();
}

@Override
protected void onPause() {
 super.onPause();
 mAdkManager.close();
}

Warning

Because of an internal ADK bug [https://github.com/palazzem/adk-toolkit/issues/11] that is still not fixed, it’s not possible to open the ADK
again when the channel has been closed. This means that if you need to use the ADK between
activities, you should not call the close() method otherwise the only way to open the
communication again is to restart your hardware accessory.

Using the toolkit

The ADKToolkit library exposes an interface to write and read bytes in/from the internal ADK buffer.
If you need to send some values to your accessory, you can use the following methods within your
application code:

byte[] byteArray = {4, 2};
byte byteValue = 42;
int intValue = 42
float floatValue = 42.0f;
String stringValue = "Answer to The Ultimate Question of Life, the Universe, and Everything"

adkManager.write(byteArray);
adkManager.write(byteValue);
adkManager.write(intValue);
adkManager.write(floatValue);
adkManager.write(stringValue);

On the other hand if you need to read a value from your accessory (for instance, a sensor value),
you can use the read() method that returns an AdkMessage instance. This class, wraps the
returned byte[] array from the buffer and exposes an API to parse retrieved value. The following
is an example how to read accessory data from your Android application:

AdkMessage response = mAdkManager.read();

Then you can call the following methods according to sent data:

	response.getBytes(): returns the raw bytes array so you can manipulate it on your own

	response.getString(): returns a string applying a (char) typecasting for each byte

	response.getByte(): returns the first byte of the bytes array buffer

	response.getFloat(): expects that the content of the bytes array buffer is a string; it calls the getString() method and tries to parse the string in a float value

	response.getInt(): expects that the content of the bytes array buffer is a string; it calls the getString() method and tries to parse the string in an integer value

	response.isEmpty(): returns true if the received buffer is empty or not initialized

If for any reasons the parsing causes an exceptions, it will be caught from the AdkResponse’s
methods and the returned value will be null.

Note

The read() method could be a long-running task, in particular if you want to read
continuously data from a your accessory. In this case, call the read() method outside your
main thread otherwise it will cause the Application Not Responding (ANR) [http://developer.android.com/training/articles/perf-anr.html] error. A good approach
is to use an IntentService [http://developer.android.com/reference/android/app/IntentService.html], an AsyncTask [http://developer.android.com/reference/android/os/AsyncTask.html], or a Runnable [https://developer.android.com/training/multiple-threads/define-runnable.html] implementation together
with an ExecutorService [http://developer.android.com/reference/java/util/concurrent/ExecutorService.html].

Arduino communication

Your Android application needs an Arduino sketch as a counterpart. Here you can find a basic
template that shows how to initialize your accessory descriptor to let Android knows that
an accessory is connected to the system:

#include <adk.h>

#define RCVSIZE 128

// Accessory descriptor. It's how Arduino identifies itself in Android.
char accessoryName[] = "Terminal echo";
char manufacturer[] = "Example, Inc.";
char model[] = "Terminal-echo";

char versionNumber[] = "0.1.0";
char serialNumber[] = "1";
char url[] = "http://www.example.com";

USBHost Usb;
ADK adk(&Usb, manufacturer, model, accessoryName, versionNumber, url, serialNumber);
uint8_t buffer[RCVSIZE];
uint32_t readBytes = 0;

void setup() {
 // Some setup operations
}

Arduino and the Android Manifest

Accessory descriptor defines how your accessory identifies itself with the Android system. These
values should be the same defined in the res/xml/usb_accessory_filter.xml file otherwise your
accessory will not find a suitable application to communicate with:

	versionNumer

	model

	manufacturer

You can use url variable to open an external link when any application capable to manage
this accessory is found. In this web page you can provide more information about how to configure
your accessory.

Note

You can also target a .apk package or a Google Play Store URL where users can download
and install your app.

Interacting with Android

When you’re connecting your accessory to Android you can have the following scenarios:

	You want to collect data from your accessory (maybe some sensors) and send them back to your

Android application
* You want to provide to users an interaction, using the Android user interface, and do some actions
with accessory actuators

Despite what is the scope of your accessory, the following are brief examples how you can read and
write data from your Arduino sketch.

Reading

Within your loop() function, add the following code to read data from the ADK buffer:

// readBytes, RCVSIZE and buffer are declared in the first snippet

void loop() {
 Usb.Task();

 if (adk.isReady()){
 adk.read(&readBytes, RCVSIZE, buffer);
 if (readBytes > 0){
 // Do something with buffer
 }
 }
 // Don't forget a delay in your sketch :)
}

Writing

If you want to send data to your Android device, use the following snippet:

// buffer is already declared in the first snippet

void loop() {
 Usb.Task();

 if (adk.isReady()){
 adk.write(sizeof(buffer), buffer);
 }
 // Don't forget a delay in your sketch :)
}

Remember that if the accessory needs both the writing and the reading phase, it could be a good idea
to use two different buffer objects; for this reason you may want to declare two uint8_t
buffers.

Simple echo sketch

You can use this sketch to create an echo accessory which sends received characters back to Android:

uint8_t readingBuffer[RCVSIZE];
uint8_t writingBuffer[RCVSIZE];

void setup() {
 // Nothing to do with this sketch
}

void loop() {
 Usb.Task();

 if (adk.isReady()){
 adk.read(&readBytes, RCVSIZE, readingBuffer);
 if (readBytes > 0){
 adk.write(readBytes, writingBuffer);
 }
 }
}

Contributing

If you want to contribute you need to follow these guidelines. Otherwise your pull request will
not be accepted.

Setup

Fork adk-toolkit [https://github.com/palazzem/adk-toolkit] repository on GitHub and follow these steps:

	Clone your repository locally

	Pull upstream changes into your fork regularly

It’s a good practice to pull upstream changes from master into your fork on a regular basis,
infact if you work on outdated code and your changes diverge too far from master, the pull request
has to be rejected.

To pull in upstream changes:

git remote add upstream https://github.com/palazzem/adk-toolkit
git fetch upstream

Then merge the changes that you fetched:

git merge upstream/master

For more info, see http://help.github.com/fork-a-repo/

Note

Please be sure to rebase your commits on the master when possible, so your commits can be
fast-forwarded: I’m trying to avoid merge commits when they are not necessary.

Issues

You can find the list of bugs, enhancements and feature requests on the issue tracker [https://github.com/palazzem/adk-toolkit/issues]. If you want
to fix an issue, pick up one and add a comment stating you’re working on it. If the resolution
implies a discussion or if you realize the comments on the issue are growing pretty fast, move
the discussion to the Google Group [https://groups.google.com/forum/#!forum/android-adk-toolkit/].

How to get your pull request accepted

All Android ADK community want your code, so please follow these simple guidelines to make the
process as smooth as possible.

Run the tests!

The first thing the core committers will do is to run all tests. Any pull request that fails this
test suite will be immediately rejected.

Add the tests!

Even if the code coverage is not a good metric for code quality, it’s better to add tests when you
add code. If you find an issue that could be reproduced with a test, just add this test and solve
the problem with a bugfix.

Code conventions matter

There are no good nor bad conventions, just follow official code style guidelines [http://source.android.com/source/code-style.html] and nobody
will argue. Try reading the code and grasp the overall philosophy regarding method and variable
names, avoid black magics for the sake of readability, keep in mind that simple is better than
complex.

Authors

Main developer

Emanuele Palazzetti <emanuele.palazzetti@gmail.com>

Contributors

No one... be the first!

Changelog

0.3.0 [2015-01-10]

New features

	Updated to latest gradle version 1.0.0

	Added AdkMessage class, which exposes the raw byte[] array with some utility methods to get string, byte, int and float representations

	Issue #13 [https://github.com/palazzem/adk-toolkit/issues/13]: refactoring AdkManager to expose a common interface for read() and write()

	Issue #16 [https://github.com/palazzem/adk-toolkit/issues/16]: AdkManager constructor now accept an Activity context to initialize the accessory

Backwards incompatible changes from 0.2.x

	removed writeSerial(String text)

	removed writeSerial(int value)

	removed readSerial()

	removed readString()

	removed readByte()

0.2.1 [2014-10-14]

	writeSerial now accept both byte and String values

	readSerial is now deprecated and default to readString method

	Added readString and readByte so you can read String and byte values from the serial port

Bugfixes

	Fixed documentation: #9 [https://github.com/palazzem/adk-toolkit/issues/9]

0.2.0 [2014-03-24]

	FileInputStream and FileOutputStream are protected so they can be mocked easily during testing

	Testing with Mockito [https://github.com/mockito/mockito]

Bugfixes

	Better input/output stream management to avoid NullPointerException on Accessory loading

Backwards incompatible changes in 0.2.0

	Some class/method names are misleading so readText/sendText become readSerial/writeSerial and closeAdk/resumeAdk become close/open

	AdkReceiver has been removed because the actual implementation of read/write can handle multiple char

0.1.0 [2014-02-05]

	ADK fast constructor

	Simple default implementation of Broadcast receiver and IntentFilter

	Writing and reading features available

	Simple AsyncTask support

Migrate from previous versions

Migrate from 0.2.x to 0.3.0

Improvement

The old initialization uses the following code:

private AdkManager mAdkManager;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mAdkManager = new AdkManager((UsbManager) getSystemService(Context.USB_SERVICE));
}

Now you can also create the AdkManager instance passing the Activity Context like you see
in the following code:

private AdkManager mAdkManager;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mAdkManager = new AdkManager(this);
}

Incompatibility

The following methods have been deleted:

	writeSerial(String text)

	writeSerial(int value)

	readSerial()

	readString()

	readByte()

For this reason you should rename in your project:

	writeSerial() to write()

	readSerial() to read().getString()

	readString() to read().getString()

	readByte() to read().getByte()

Note

Remember that read() returns an AdkMessage instance and you may want to cache this
response in a variable.

Migrate from 0.1.0 to 0.2.0

Incompatibility

Some class/method names are misleading so readText/sendText become readSerial/writeSerial and
closeAdk/resumeAdk become close/open.

Rename in your project:

	readText to readSerial

	sendText to writeSerial

	closeAdk to close

	resumeAdk to open

Incompatibility

AdkReceiver has been removed because the actual implementation of read/write can handle
multiple char.

If you have some AsyncTask which extend AdkReceiver, simply extend a regular AsyncTask and
add a valid doInBackground method as follows:

public class MyAsyncTask extends AsyncTask<AdkManager, String, Void> {

 @Override
 protected Void doInBackground(AdkManager... params) {
 AdkManager adkManager = params[0];
 publishProgress(adkManager.readSerial());

 return null;
 }

 // Follows your implementation of MyAsyncTask
}

Index

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Android ADK Toolkit: startup without headaches!

 		Overview

 		Compatible Android devices

 		Compatible ADK devices

 		Usage

 		Installing the library

 		Gradle

 		Maven

 		Eclipse users

 		Configuring the Android application

 		Android Manifest

 		Starting the ADK listener

 		Using the toolkit

 		Arduino communication

 		Arduino and the Android Manifest

 		Interacting with Android

 		Reading

 		Writing

 		Simple echo sketch

 		Contributing

 		Setup

 		Issues

 		How to get your pull request accepted

 		Run the tests!

 		Add the tests!

 		Code conventions matter

 		Authors

 		Main developer

 		Contributors

 		Changelog

 		0.3.0 [2015-01-10]

 		0.2.1 [2014-10-14]

 		0.2.0 [2014-03-24]

 		0.1.0 [2014-02-05]

 		Migrate from previous versions

 		Migrate from 0.2.x to 0.3.0

 		Improvement

 		Incompatibility

 		Migrate from 0.1.0 to 0.2.0

 		Incompatibility

 		Incompatibility

_static/comment.png

_static/down.png

